当前位置:首页 >> 脚本专栏

numpy.random.shuffle打乱顺序函数的实现

numpy.random.shuffle

在做将caffe模型和预训练的参数转化为tensorflow的模型和预训练的参数,以便微调,遇到如下函数:

def gen_data(source):
  while True:
    indices = range(len(source.images)) # indices = the number of images in the source data set
    random.shuffle(indices)
    for i in indices:
      image = np.reshape(source.images[i], (28, 28, 1))
      label = source.labels[i]
      yield image, label

之前卑鄙陋寡闻,不知道这个用法,按照字面上的意思是打乱,那么这里就应该是让训练数据集中的数据打乱顺序,然后一个挨着一个地(for i in indices)生成训练数据对。下面就从docs.scipy.org中查到的random.shuffle的用法:

numpy.random.shuffle(x)

Modify a sequence in-place by shuffling its contents.

Parameters:

x : array_like

The array or list to be shuffled.

Returns:

None

举例

python>
> arr = np.arange(10)
> np.random.shuffle(arr)
> arr
[1 7 5 2 9 4 3 6 0 8]

This function only shuffles the array along the first index of a multi-dimensional array(多维矩阵中,只对第一维(行)做打乱顺序操作):

python>
> arr = np.arange(9).reshape((3, 3))
> np.random.shuffle(arr)
> arr
array([[3, 4, 5],
    [6, 7, 8],
    [0, 1, 2]])This function only shuffles the array along the first index of a multi-dimensional array:

参考:

[1] https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.shuffle.html#numpy-random-shuffle

[2] https://github.com/ethereon/caffe-tensorflow/blob/master/examples/mnist/finetune_mnist.py

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。