服务器有多张显卡,一般是组里共用,分配好显卡和任务就体现公德了。除了在代码中指定使用的 GPU 编号,还可以直接设置可见 GPU 编号,使程序/用户只对部分 GPU 可见。
操作很简单,使用环境变量 CUDA_VISIBLE_DEVICES 即可。
具体来说,如果使用单卡运行 Python 脚本,则可输入
CUDA_VISIBLE_DEVICES=1 python my_script.py
脚本将只使用 GPU1。
在 .py 脚本和 Notebook 中设置,则
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
还可以直接设置临时的环境变量:
export CUDA_VISIBLE_DEVICES="0"
此时该用户的 CUDA 只看得见 GPU0。
至于显存设置,可以设置使用比例(70%):
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
也可以按需增长:
config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config, ...)
如果是 Keras 使用 TensorFlow 后端,则可通过如
import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.allow_growth = True set_session(tf.Session(config=config))
更改使用设置。
以上这篇浅谈多卡服务器下隐藏部分 GPU 和 TensorFlow 的显存使用设置就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。